

1. Radius of curvature of the curvature is given by $\frac{1}{r} = \frac{d^2y}{dx^2}$. Excess pressure is given by $\Delta P = \frac{2S}{r}$ $r = \frac{2S}{\Delta P} = \frac{2S}{\rho gy}$ $\frac{d^2y}{dx^2} = \frac{1}{r} = \frac{\rho gy}{S}$ (2)

$$2. m = m_o m_e = \frac{LD}{f_o f_e} = \frac{40 \times 25}{2 \times 4} = 125 \quad (2)$$

3. Path of the electron will not be deflected if the force on it due to electric and magnetic fields are equal and opposite. E should be perpendicular to B . $F_e = F_m$
 $Ee = Bev$ $E = \frac{9 \times 10^{-4}}{100} \times 3 \times 10^8 = 27 \times 10^2 V/m$ (2)

4. Acceleration on rough inclined plane $a = g(\sin \theta - \mu_k \cos \theta)$ time $t_r = \frac{2l}{g(\sin \theta - \mu_k \cos \theta)}$, l is length of the inclined plane (4)

$$\text{Acceleration on smooth inclined plane } a = g \sin \theta \quad t_s = \frac{2l}{g \sin \theta}$$

$$\text{Taking ratio of equations (1) and (2)} \quad \mu_k = 1 - \frac{1}{n^2} = 1 - \frac{1}{4} = 0.75 \text{ where } n = \frac{t_r}{t_s}$$

5. Stopping distance is obtained by work energy theorem. $-Fr = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$
 $Fs = \frac{1}{2}mu^2 = K$ since final velocity v is zero. $F \propto \frac{K}{s} \quad \frac{F_A}{F_B} = \frac{K_A S_B}{K_B S_A} = \frac{100}{225} \frac{1500}{1000} = \frac{2}{3}$ (2)

6. ABCDEF forms a balanced wheat stone bridge. The equivalent resistance is $\frac{8}{3}$.
Total resistance $R = \frac{8}{3} + \frac{1}{3} + 1.5 + 5.5 = 10 \quad i = \frac{V}{R} = \frac{5}{10} = 0.5 A$ (2)

7. At point P equation of motion for the particle is $mg \cos(90 - \theta) - T = \frac{mv^2}{l}$ (1).

When the string is slack $T=0$. From equation (1) $v = \sqrt{gl \sin \theta}$. by conservation of energy at the bottom and point P $K_i + U_i = K_f + K_i \quad \frac{1}{2}mv_o^2 = mgl + mgl \sin \theta + \frac{1}{2}mv^2 \quad v_o^2 = 2gl + 2gl \sin \theta + 2v^2 = 2gl + 3gl \sin \theta \quad v_o = \sqrt{2gl + 3gl \sin \theta}$

$$\frac{v}{v_o} = \left(\frac{\sin \theta}{2+3 \sin \theta} \right)^{\frac{1}{2}} \quad (4)$$

8. Different inputs are given to A and B and output is found.

A	B	$\overline{A+B}$	$\overline{A.B}$	A.B		
0	0	1	1	1		
1	0	0	1	0		
0	1	0	1	0		
1	1	0	0	0		

NOR gate (4)

9. Magnetic field is perpendicular to electric field $E_z = 60 \sin(5x + 1.5 \times 10^9 t)$. Also $c = \frac{E_o}{B_o}$ $B_o = \frac{60}{3 \times 10^8} = 2 \times 10^{-7}$. Since wave is propagating in x direction and

electric field is in z direction, the magnetic field is in the y direction. Hence $B_y = 2 \times 10^{-7} \sin(5x + 1.5 \times 10^9 t)$ (1)

10. Impulse = change in momentum $\vec{I} = m\vec{v} - m\vec{u}$ $u = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 40} =$

$$28. v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 10} = 14 \quad \vec{I} = 0.5 (14\hat{j} - (-28\hat{j})) = 21 \text{ Ns} \quad (1)$$

11. Applying Kirchoff's voltage law $V_A - 1 \times 1 - 5 - 2 \times 2 = V_B \quad V_A - V_B = 10 \text{ V}$ (4)

12. Magnetic moment $M = iA = i \pi r^2 \quad M \propto r^2 \quad \frac{M_1}{M_2} = \frac{r_1^2}{r_2^2} = \frac{1}{4} \quad (1)$

13. Power $p = p_1 + p_2 + p_3 + p_4 = 4p$ and magnification $m = m_1 m_2 m_3 m_4 = m^4$ (3)

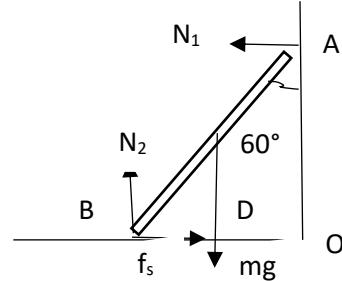
14. Gauge pressure is the pressure difference between pressure of the gas and atmospheric pressure. No of moles $n = \frac{PV}{RT} = \frac{12 \times 1.01 \times 10^5 \times 30 \times 10^{-3}}{\frac{100}{12} \times 300} = 14.54 \text{ no.}$ of moles of gas escaped $= 18.20 - 14.544 = 3.656. \quad 3.656 \times 32 \text{ g} = 116.9 \text{ g}$ (3)

15. Differentiating with respect to time $1 = (2x + 1) \frac{dx}{dt} \quad v = \frac{1}{2x+1} \quad a = v \frac{dv}{dx} = v(-1 \left(\frac{1}{2x+1}\right)^{-2} 2) = -\frac{2}{(2x+1)^3} \quad (2)$

16. Impedance $Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{20^2 + (45 - 25)^2} = 20\sqrt{2} \Omega \quad i = \frac{V}{Z} = \frac{220}{20\sqrt{2}} = 7.8 \text{ A} \quad \tan \phi = \frac{X_L - X_C}{R} = \frac{(45 - 25)}{20} = 1 \quad \phi = 45^\circ \quad (2)$

17. Angular momentum is conserved since there is no external torque. $L = I\omega = \frac{\frac{2}{5}MR^2 2\pi}{T} \quad T \propto R^2 \quad \frac{T_2}{T_1} = \frac{R_2^2}{R_1^2} = 4 \quad T_2 = 4T_1 = 4 \times 27 = 108 \text{ days}$ (4)

18. Magnetic moment of electrons is given by $\mu_l = \frac{e}{2m} l$ but angular momentum is $l = I\omega = \frac{mr^2 Be}{m} = \frac{\pi r^2 Be}{\pi} = \frac{e\phi}{\pi} = \frac{e h}{\pi e} = \frac{h}{\pi} \quad \mu_l = \frac{\frac{e}{2m} h}{\pi} = \frac{eh}{2\pi m} \quad (2)$


19. Rate of flow of heat $H = \frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \quad H \propto K(\theta_1 - \theta_2)$ For the three rods $2K(3T - T_1) = K(T_1 - T_2) = 2K(T_2 - T)$ solving $2K(3T - T_1) = 2K(T_2 - T)$ $T_2 = 4T - T_1$ substituting T_2 in $2K(3T - T_1) = K(T_1 - T_2)$ we get $T_1 = \frac{5}{2}T$. $T_2 = 4T - \frac{5T}{2} = \frac{3T}{2} \quad \frac{T_1}{T_2} = \frac{5}{3}$ (3)

20. Effective capacity $C' = \frac{\epsilon_0 A}{d - (t_1 + t_2) + \frac{t_1 + t_2}{k_1 + k_2}} = \frac{\epsilon_0 A}{d - \left(\frac{3d}{8} + \frac{d}{2}\right) + \frac{3d}{8k_1} + \frac{d}{2k_2}} = \frac{\epsilon_0 A}{\frac{d}{8} + \frac{3d}{8k_1} + \frac{d}{2k_2}} \quad C = \frac{\epsilon_0 A}{d}$
 $\frac{C'}{C} = \frac{d}{\frac{d}{8} + \frac{3d}{8k_1} + \frac{d}{2k_2}} = \frac{1}{\frac{1}{8} + \frac{3}{8k_1} + \frac{1}{2k_2}} = 2 \quad \text{solving } K_1 = 2.66 \quad (1)$

21. Relative velocity of bus from x $v_x = v - v_g$ v_x is velocity of bus from with respect to the girl's velocity v_g . $v_y = v - v_g = v - (-60) = v + 60$. Distance $d = v_x t_x = \frac{(v-60)30}{60} = v_y t_y = \frac{(v+60)}{60} 10$
 $(v - 60)3 = v + 60 \quad v = 120 \text{ Km.}$

$$d = \frac{(120-60)30}{60} = 30 \text{ Km}$$

$$T = \frac{30}{120} = \frac{1}{4} \text{ hr} = 15 \text{ min} \quad 4$$

22. Applying torque equation $\sum T_z = 0$.
clockwise torque = anticlockwise torque.

$$N_1(OA) = mg(BD) \quad N_1(5 \cos 60) = 20 \times 10 \times \left(\frac{5}{2} \sin 60\right)$$

$$N_1 = 100 \tan 60 = 100\sqrt{3} \quad \sum F_x = 0 \quad N_1 = f_s = 100\sqrt{3} \text{ N} \quad 2$$

23. Option 2. Angular frequency $\omega = \sqrt{\frac{k}{m}}$. as the mass decreases angular frequency increases. $\nu = A\omega = A\sqrt{\frac{k}{m}}$. as the mass decreases amplitude decreases. 2

24. Option 3.

25. Diameter $D = M.S.R + V.S.R \times L.C + \text{CORRECTION} = 5 \text{ cm} + 8 \times 0.01 \text{ cm} - 0.1 \text{ cm} = 4.98 \text{ cm} \quad 3$

26. Option 3

27. Option 1. At Brewster's angle reflected light is completely polarized and angle of reflection is close to 60° . 1

28. When the third sphere is in contact with the first one, by conservation of charge $q = 2q' \quad q' = \frac{q}{2}$. When the third sphere is in contact with the second one,

$$2q'' = q + \frac{q}{2} \quad q'' = \frac{3q}{4}. \text{ By coulomb's law } F \propto q_1 q_2, \quad \frac{F'}{F} = \frac{q_1' q_2'}{q_1 q_2} = \frac{\frac{q}{2} \frac{3q}{4}}{q q} = \frac{3}{8} \quad F' = \frac{3F}{8} \quad 4$$

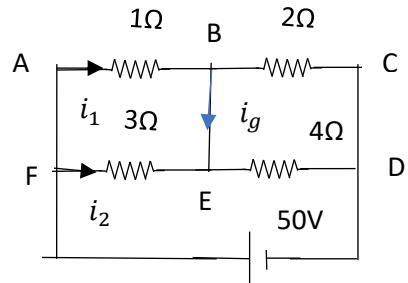
29. When the gases are mixed the total energy is conserved. $PV =$

$$\frac{1}{3}mnVv_{rms}^2 = \frac{2}{3} \frac{1}{2}mNv_{rms}^2 = E = \text{total energy of all molecules} \quad P_1V_1 = \frac{2}{3}E_1 \quad P_2V_2 = \frac{2}{3}E_2 \quad PV = \frac{2}{3}E \quad E = E_1 + E_2 \quad \frac{3}{2}P(V_1 + V_2) = \frac{3}{2}(P_1V_1 + P_2V_2) \quad P = \frac{P_1V_1 + P_2V_2}{V_1 + V_2} = \frac{\frac{1}{3}E_1 + \frac{1}{3}E_2}{V_1 + V_2} = \frac{\frac{1}{3} \times 2 + \frac{1}{3} \times 2 \times 3}{2 + 3} = 1.6 \text{ atm} \quad 2$$

30. The necessary centripetal force is provided by F . $F = \frac{mv^2}{r}$. According to Bohr quantization condition angular momentum $L = mvr = \frac{nh}{2\pi}$. $mv \left(\frac{mv^2}{F} \right) = \frac{nh}{2\pi}$. $v^3 \propto n$. $v \propto n^{\frac{1}{3}}$. $r \propto \frac{n}{v} \propto \frac{n}{\frac{1}{n^{\frac{2}{3}}}} \propto n^{\frac{2}{3}}$ 3

31. According to Kepler's law of periods $T^2 \propto a^3$. $\frac{T_2^2}{T_1^2} = \frac{a_2^3}{a_1^3} = \left(\frac{a_2}{4a_2}\right)^3 = \frac{1}{64}$. $\frac{T_2}{T_1} = \frac{1}{8}$.

$$T_2 = \frac{T_1}{8} = \frac{687}{8} = 88 \text{ days} \quad 1$$

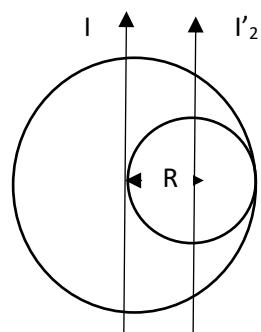

32. Variation of g with height is $\frac{W'}{W} = \left(\frac{R}{R+h}\right)^2 = \left(\frac{R}{R+\frac{R}{3}}\right)^2 = \frac{9}{16}$. $W' = \frac{9}{16} (48) = 27 \text{ N}$

2

33. Resistance of each piece is $\frac{R}{8}$. Resistance of 4 pieces when connected in parallel is $\frac{R}{32}$. Resistance of two sets of four pieces when connected in series is $2\left(\frac{R}{32}\right) = \frac{R}{16}$. 3

34. Radius of the Bohr orbit $r \propto n^2$. $r_2 = 4r_1 = 4(0.052 \text{ nm}) = 0.208 \text{ nm}$. $n\lambda = 2\pi r$. $\lambda = \frac{2 \times 3.14 \times 0.208}{2} = 0.67 \text{ nm}$ 2

35. Work done to rotate the dipole is equal to change in potential energy. $W = pE(\cos \theta_2 - \cos \theta_1) = 5 \times 10^{-6} \times 4 \times 10^5 \times (\cos 0 - \cos 60) = 1.0 \text{ J}$ 2


36. Applying Voltage law for loop ABEF $-i_1 + 3i_2 = 0$ --- (1) $i_1 = 3i_2$ $-i_1 - 2(i_2 - i_g) + 50 = 0$ --- (2) $-3i_2 - 4(i_2 + i_g) + 50 = 0$ --- (3) solving for i_2 we get $i_2 = 6 \text{ A}$. Putting i_2 in equation (3) $i_g = 2 \text{ A}$ 2

37. Momentum of photon is $E = mc^2 = \frac{hc}{\lambda}$. $\lambda_{photon} = \frac{h}{mc} = \frac{hc}{E}$. Momentum of electron is $\lambda_{electron} = \frac{h}{p} = \frac{h}{\sqrt{2mE}} \cdot \frac{\lambda_{photon}}{\lambda_{electron}} = \frac{hc}{E} \frac{\sqrt{2mE}}{h} = c \sqrt{\frac{2m}{E}}$ 3

38. Photoelectric current is directly proportional to the intensity of light. 1

39. Let M be the mass of the sphere. Mass of the small sphere $m' = \rho \frac{4}{3} \pi R^3 = \frac{M}{\frac{4}{3} \pi 8R^3} \frac{4}{3} \pi R^3 = \frac{M}{8}$. M.I of the small

sphere about its own axis is $I'_2 = \frac{2}{5} m' R^2 = \frac{2}{5} \frac{M}{8} R^2 = \frac{2MR^2}{40}$ M.I about the centre $I_2 = \frac{2MR^2}{40} + \frac{MR^2}{8} = \frac{7MR^2}{40}$ $I = \frac{2}{5} M4R^2$ M.I of

the remaining portion $I_1 = I - I_2 = \frac{8MR^2}{5} - \frac{7MR^2}{40} = \frac{57MR^2}{40}$ $\frac{I_2}{I_1} = \frac{7}{57}$ 3

40. Option 2. Time period $T = \frac{2\pi}{\omega} = \frac{2\pi}{100\pi} = \frac{1}{50}$ s the phase angle $\theta = \omega t = 100\pi \times 15 \times 10^{-3} = \frac{3}{2}\pi$. The upper end of the transformer is positive and the lower end is negative. So D_1 is reverse biased and D_2 is forward biased. 2

41. From first law of thermodynamics $dQ = dU + dW$ since dQ and dU are same, the work done in both cases is same. $dW = PA dx = P\pi r^2 dx = \text{constant}$.

$$r^2 \propto 1/dx \quad r \propto \frac{1}{\sqrt{dx}} \quad \frac{r_A}{r_B} = \sqrt{\frac{dx_B}{dx_A}} = \sqrt{\frac{9 \text{ cm}}{16 \text{ cm}}} = \frac{3}{4} \quad 2$$

42. Percentage error in p is $\frac{\Delta p}{p} \times 100 = 3 \frac{\Delta a}{a} \times 100 + 2 \frac{\Delta b}{b} \times 100 + \frac{\Delta c}{c} \times 100 + \frac{1}{2} \frac{\Delta d}{d} \times 100 = 3 \times 1 + 2 \times 3 + 2 + \frac{1}{2} \times 4 = 13\%$ 3

43. According to Malus law $I_3 = I_o \cos^2 \theta \sin^2 \theta = \frac{4I_o \cos^2 \theta \sin^2 \theta}{4} = \frac{I_o \sin 2\theta}{4} = \frac{I_o \sin 45}{4} = \frac{I_o}{8}$ 3

44. The maximum speed of the particle is $v_{max} = A\omega = A\sqrt{\frac{K}{m}} A\sqrt{k} = \text{const.}$

$$\frac{A_Q}{A_P} = \sqrt{\frac{K_P}{K_Q}} = \sqrt{\frac{K_1}{K_2}} \quad 4$$

45. For open pipe $f_o = \frac{v}{2l_o}$. For closed pipe $f_c = \frac{v}{4l_c}$. But $l_c = \frac{l_o}{2} \cdot \frac{v}{4f_o} = \frac{v}{2(2f)} f_o = f$ 2